Strategic Noise – Why Different

- **Stochastic Noise** (errors ~ Distribution)
 - any error, s.t., loss < gain
- **Strategic Noise** (any error, s.t., loss < gain)
 - Can report: \((x_i, y_i) \in \mathbb{R}^{d+1}\)
 - Single Peaked Preferences: prefer outcome \(y_i\)

Model

- \(n\) agents, each controls one datapoint: \((x_i, y_i) \in \mathbb{R}^{d+1}\)
- \(x_i\): public information, \(y_i\): private (manipulable)
- Agents are strategic:
 - Can report: \((x_i, y_i) \in \mathbb{R}^{d+1}\) s.t., \(y_i \neq y_i\)
 - Single Peaked Preferences: prefer outcome \(y_i\)

Our Goal. Construct Linear Regression mechanism \(M^*(Y)\):

- Learn relationship between \(x, y\)
- Induce strategyproofness (SP) (prefer truth telling from misreporting, irrespective of reports of others) without monetary incentives

Example of a SP Linear Regression (corrected) CRM Family [Perote & Perote-Peña, 2004]

1) Split dataset into \(S, S'\) s.t.: \(S = S'\) or \(S', S'\': \) separable
2) From each point in \(S\), compute CWA for points in \(S'\)
3) Final line: median-of-median CWAs
 - Only defined for 2D, not generalizable to higher dimensions

Generalized Resistant Lines (GRL)

Definition \([S, S', k, k'] - GRL\). Choose \(S, S'\) separable and \(k \in [I(S)], k' \in [I(S')]\). Output line \((\beta_k, \beta_0)\) s.t.:
\[
\min_{y \in S} (y - \beta_k x - \beta_0) = \min_{y' \in S'} (y' - \beta_k x - \beta_0) = 0
\]

E.g., previous example was a \((S, S', 2, 2)\)-GRL mechanism

Generalized Resistant Hyperplanes (GRH)

- Choose \(S_1, \ldots, S_{d+1}\) publicly separable and \(k_1 \in [I(S_1)], \ldots, k_{d+1} \in [I(S_{d+1})]\). Output line \((\beta_{d+1}, \ldots, \beta_0)\):
\[
\min_{y \in S_1} (y - \beta_{d+1} x - \beta_0) = \min_{y' \in S_{d+1}} (y' - \beta_{d+1} x - \beta_0) = 0
\]

Theorem. GRH mechanisms yield unique solution and are group-strategyproof.

Proof Idea.
- Any coalition creates a new hyperplane.
- Uniqueness of GRH for given \(k_1, \ldots, k_{d+1}\) new hyperplane either does not exist, or some agent is not rational

Efficiency of SP Linear Regressors

When no strategic considerations: Ordinary Least Squares (OLS) is most popular, but

In fact, CRM \(\subseteq\) GRL

GRL mechanisms generalize to higher dimensions.

Problems:
1) Definition of separability in higher dimensions
2) Uniqueness of solution

Ham Sandwich Theorem

Theorem (Stone & Tukey, 1942). Given \(k\) continuous measures \(\mu_1, \ldots, \mu_k\) on \(\mathbb{R}^d\), \(\exists\) hyperplane, \(H: \mu_i(H^+) = \frac{1}{2}, \forall i \in [k]\).

- **Discrete Variant** (still bisecting) due to [Elton & Hill, 2011]
- **Unique Variant** due to [Steiger and Zhao, 2010]
 \(\rightarrow\) close to what we need

Open Questions

1) What about consistency?
2) SP linear regressors for other types of agent incentives?
3) Constructive characterization of all SP linear regressors.

Overarching Goal

To build a Theory of Incentives for ML algorithms.