

A Bridge between Liquid and Social Welfare in Combinatorial Auctions with Submodular Bidders

Chara Podimata, Harvard University

Dimitris Fotakis (NTUA & Yahoo! Research), **Kyriakos Lotidis** (NTUA) and **Chara Podimata** (Harvard University)

Examples of Combinatorial Auctions (CAs)

Spectrum Auctions

- Canada: ~ \$5 billion
- Germany: ~ \$57 billion
- India: ~ \$13 billion

Airport Slot Auctions

Network Routing Auctions

CAs [No Budgets]

AAAI-19, 02/01/2019

Measure of Welfare Efficiency [No Budgets]

Hard to maximize truthfully in CAs!

Approximations for specific classes of valuation functions (e.g.,

submodular: $S \subseteq T, x \notin T: v(S \cup \{x\}) - v(S) \ge v(T \cup \{x\}) - v(T))$

<u>Worst – Case</u>

(no further assumptions apart from submodularity)

• $O(\log m)$ [Krysta & Vocking, 2012]

• $O(\sqrt{\log m})$ [Dobzinski, 2016]

Bayesian

(valuations drawn from known distributions)

 O(1) [Feldman, Gravin, Lucier, 2014; Duetting, Feldman, Kesselheim, Lucier, 2017]

- Posted price mechanisms used in both cases
- Bidders choose bundles through Demand Queries (DQ): $S_i := DQ(v_i, U_i, \vec{p}) = \arg\max_{T \subseteq U_i} \{v_i(T) - p(T)\}$

Measure of Welfare Efficiency [With Budgets]

Can we achieve <u>same order approximation</u> for <u>LW</u> with <u>truthful</u> mechanisms, as we did for the SW in CAs w/o budgets?

Can we achieve same order approximation for LW

with <u>truthful</u> mechanisms, as we did for the SW in CAs w/o budgets?

✓ Worst – Case: $O(\sqrt{\log m})$ - apx for opt LW

✓ Competitive Markets: O(1) - apx for opt LW [Introduced Setting]

✓ Bayesian Setting: O(1) - apx for opt LW

Our Approach (1)

- 1. Fix bidder ordering π & set $U_1 = U_2 = \cdots = U$
- 2. Initial prices $\vec{p}^{(1)} = (p_1^{(1)}, \dots, p_m^{(1)})$
- 3. For each bidder $i \sim \pi$ do:
- 4. Let *i* choose $S_i := DQ(v_i, U_i, \vec{p})$
- 5. With prob. q give i: S_i & set: $U_{i+1} = U_i \setminus S_i$
- 6. Update prices $\vec{p}^{(i+1)} = (p_1^{(i+1)}, \dots, p_m^{(i+1)})$

✓ Truthfulness (clear: choice of S_i from DQ)

- ✓ Appropriate <u>initial prices</u> & <u>price update rule</u>:
 - → $O(\log m)$ apx for SW in worst-case
 - → O(1) apx for SW in Bayesian settings

Lemma 1. Valuation func is submodular/XOS \rightarrow liquid valuation ($\bar{v}(S) = \min\{v(S), B\}$) is submodular/XOS

Chara Podimata

Our Approach (3)

Definition (Budget Constrained Demand Query): $S_i \coloneqq BCDQ(v_i, U_i, \vec{p}, B_i)$ $= \arg \max_{T \subseteq U_i} \{v_i(T) - p(T) | p(T) \le B_i\}$

✓ truthfulness

What about the approximation guarantees?

Lemma 2. Let $S \subseteq U$ chosen by BCDQ. Then, for any $T \subseteq U$: 1. $\bar{v}(S) \ge \bar{v}(T) - p(T)$ 2. $2\bar{v}(S) - p(S) \ge \bar{v}(T) - p(T)$

Our Approach (6)

- 1. Fix bidder ordering π & set $U_1 = U_2 = \cdots = U$
- 2. Initial prices $\vec{p}^{(1)} = (p_1^{(1)}, \dots, p_m^{(1)})$
- 3. For each bidder $i \sim \pi$ do:
- 4. Let *i* choose $S_i := BCDQ(v_i, U_i, \vec{p}, B_i)$
- 5. With prob. q give i: S_i & set: $U_{i+1} = U_i \setminus S_i$
- 6. Update prices $\vec{p}^{(i+1)} = (p_1^{(i+1)}, \dots, p_m^{(i+1)})$
 - ✓ Appropriate <u>initial prices</u> & <u>price update rule</u>:
 - $\rightarrow O(\log m)$ apx for LW in worst-case
 - $\rightarrow O(1)$ apx for LW in Bayesian settings

✓ Truthfulness

Competitive Markets for CAs

Competitive Markets for CAs

Conclusion

Results

✓ <u>Truthful</u> mechanisms for submodular CAs with budgets:

- $O(\log m)$ apx to opt LW for worst case
- O(1) apx to opt LW for Bayesian case
- O(1) apx to opt LW for Competitive Markets

Future Work

✓ Use of BCDQ & our techniques for extending

results of CAs w/o budgets to budgeted settings

Thank You!

Robert Of